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A mathematical model has been considered for the tips of laser scalpels. Simula- 
tion problems have been solved numerically. 

In the last few years, laser technology has found ever increasing use in medicine. Such 
properties of laser radiation as high power density, small beam divergence, and high monochro- 
maticity can be used in surgery, in making laser scalpels. A scalpel is a system that in- 
corporates a pulsed laser, with average radiation power of 40 W and pulse recurrence frequency 
of i00 Hz, and an optical fiber connected to the focusing system of the laser radiation [i]. 
Selection of the system is a critical feature in the design of laser scalpels since this 
system must provide for the necessary beam shape and power density. 

In this work, the model for passage of radiation and formation of the thermal field in 
the optical system (the laser scalpel's tip) is considered. A comparative analysis of dif- 
ferent types of tips is given, including ellipsoidal, parabolic, and conical (Fig. I). 

i. Propagation of laser radiation along the scalpel. Laser radiation can be considered 
with a reasonably high accuracy to be monochromatic with wavelength l'. Such properties of 
substances as the reflection coefficient and the coefficient of radiation absorption can be 
considered constant, independent of the wavelength. When radiation passes through a trans- 
lucent medium, we can distinguish self-radiation, scattering, and absorption of light. If 
the wavelength X' is in the visible range of the spectrum, then at temperatures T < 1000 K, 
the self-radiation can be disregarded. The tips of laser scalpels are usually made of quartz 
glass and sapphire crystals, the dispersion coefficients of which can be neglected. Therefore, 
the passage of radiation in the laser scalpel is described by the equation of radiative trans- 
fer in an absorbing medium [2] 

fiv~ (~) + • (6) = o. 

In a cylindrical coordinate system, Eq. (i) is of the form 

(1) 
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Here ~ is the cosine of the angle between the projection of the direction ~ on a plane that 
is perpendicular to the symmetry axis and the radius-vector r, y is the cosine of the angle 
between the direction of flight of the photon and the axis of symmetry. 

On the lateral surface of the instrument, the phenomena of refraction and partial re- 
flection take place. By assuming that the reflection is mirror reflection, we can write the 
boundary conditions for Eqs. (i) and (2) in the form 

I(~, 0=6I ( - -~ ,  r)+l*(~, r), (Q, n )<0 .  (3) 

Here I ~ is  the  i n t e n s i t y  of the r a d i a t i o n  suppl ied from the ou t s ide .  

If the media in contact have real refraction coefficients, then the reflection coeffi- 
cient 6(~) is found from the Fresnel formulas [3]. For media with complex refraction coeffi- 
cients, the equation to determine 6(~) is of the form 
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Fig. 1. Arrangement for a laser scalpel: i) laser; 
2) light pipe made of quartz glass, and a tip; 3) 
epidermis; 4) sapphire focone with light-supplying 
conductor. 

2 [In~cos~+n~cos~ + - " ~ co~ ~ + ~ cos ~ 

Equation (2) with boundary conditions (3) describes the process of laser radiative trans- 
fer, and for the case of axial symmetry Eqs. (2) and (3) are four-dimensional with respect to 
the unknown I. The optimal method for solving such equations is statistical simulation [3, 4]. 
In this method, the propagation of discrete portions of light ("beams") is tracked. The ab- 
sorption of the "beams" in the instrument is considered, and, after averaging, the light 
intensity and the density of radiative energy are determined. The reflection of "beams" from 
the boundary surface of two media is simulated by methods of linear optics. 

The critical point in this method is specification of probability density functions P($) 
of emission of the "beam" with specified initial parameters $. If the probability density 
function is known, equations for the ray parameters, obtained after transformation of the 
expression 

R (~.) = .! P (~*) d~*, 
- - o a  

are of the form $ = f(R), where R is a random number from the interval [0, i]. When solving 
the problem numerically, the input energy density is specified in the form of a Gaussian func- 
tion, the polar angle that characterizes the divergence of the "beam" being given by the 
equation 

O= arcsin (t/Rsin Om~)'. 

After statistical processing of the results of a numerical experiment, the distribution 
of densities of light power was obtained in the plane of the exposed tissue. 

For conical tips, a diverging radiation beam arises at the output; therefore, conditions 
are most favorable when the instrument is positioned at a small distance from the epidermis. 
In this case, the power flux has a maximum value of about 7.5.105 W/m 2 (for unit laser radia- 
tion power, the radius of the tip's base is equal to 2 mm, and the tip's length equals 2 mm). 
The distribution pattern of power density for a cone angle of 90 deg is shaped like a Gauss 
function (Fig. 2). 

Ellipsoidal and paraboloidal tips produce a convergent radiation beam, which is focused 
at a certain distance from the instrument. Their application requires an experimental deter- 
mination of the optimal distance to tissue. The distribution of power density on epidermis 
when the scalpel is in contact with tissue does not have a sharply defined maximum in the 
neighborhood of the symmetry axis, and for ellipsoidal tips, one can observe a decrease in 
radiation when approaching the sym~netry axis (Fig. 2). The maximum power density is obtained 
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Fig. 2. Distribution of power density at the output of a tip made of 
quartz glass (.105 W/m2), with a base radius of 2 mm and ratio between 
the length and radius of i/i: l) conical tip; 2) paraboloidal; 3) ellip- 
soidal. 

Fig. 3. Distribution of power density at the output of the sapphire 
focone ('103 W/m 2) with taper angle r and the angle between the focone 
axis and a moving coordinate X: l) r = 15 ~ , X = 90~ 2) 15 and 45; 3) l0 
and 90; 4) i0 and 45; 5) 5 ~ and 90 ~ . 

as a result of focusing radiation at a certain distance from the point of the instrument. The 
optimal operational regime depends not only on the tip parameters, but also on the refraction 
coefficient of the surrounding medium and of the upper layers of epidermis. 

Taking account of the thermal regime, tips made of sapphire cones (focones) are optimal. 
Radiation is supplied to them through a special quartz light conductor whose face plane is 
polished. The distribution of power density for sapphire focones with taper angles equal 
to 5, I0, and 15 ~ has a clearly defined maximum in the neighborhood of the point of contact 
of the laser with epidermis. In Fig. 3, the distribution of power density at the focone's 
output is shown for two cases: the angle between the symmetry axis of the tip and a dimension- 
less coordinate is equal to 90 ~ (the scalpel is along the normal) and 45 deg (the scalpel is 
tilted). 

2. Thermal model of laser scalpel. The thermal regime of the tips of the laser scalpels 
is affected by conductive, convective, and radiative heat exchange. The energy equation de- 
scribing such processes can be written in the form [5] 

div (~ grad T) -- div W = 0, (4) 

where W= ? dv J ~I~dQ is the vector of the radiative energy flux. 

0 

We analyze the term div W that characterizes the contribution of radiation to the total 
heat exchange. The radiation intensity I v entering into (4) can be represented as the super- 
position of the intensity of laser radiation and of thermal radiation: 

~' = ?T + ~'~- 

For thermal radiation, the mean free path of photons is considerably larger than the char- 
acteristic dimensions of the tip; therefore, Planck's approximation is applicable: 

div Wr = 4• ~. (5) 
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Fig. 4. Dependence of the maximal overheating 
in the laser scalpel's tip (T - Tav), K, on the 
size of the contact zone d, mm, for unit input 
radiation power and an instrument radius equal 
to 2 mm: I) linear problem; 2) nonlinear problem. 

For laser radiation, the intensity does not depend o E temperature and is determined by the 
system of Eqs. (2) and (3); therefore, the term div W L can be replaced by its equivalent - 
the introduction of interior and surface sources into Eq. (4): 

div ~'L ~ (o + q6 (r - -  r'), r -~ ~ OG. (6) 

Equations for determining m and q are obtained as a result of statistical solution of the 
transport equation. With the help of the Pomerantsev criterion Po and the Kirpichev criterion 
Ki, we estimate the contribution of m and q to heat exchange; Po << I, so that the contribution 
of the interior sources is negligible. The main contribution to the heating of the instrument 
is from the surface sources that arise from contact with nontransparent tissue (Ki >> i). 

Equation (4) is solved numerically by finite-difference methods. When simulating the 
thermal field in the system made up of the laser scalpel and the surrounding medium, it 
becomes necessary to consider a m~nber of simulation problems and to obtain necessary rela- 
tionships when analyzing them. 

From Eqs. (4) to (6), we can write the simulation problem for the thermal regime of 
a conical tip in the form 

a (r  aT ~ OZT o) = 0 ,  (r, z)~G; (7 )  
Or -O'/--r ) + az ---T-~ + ~--~- 

~. aT  + ~z (T - -  Tav) = q, (r, z) E aO. ( 8 )  
On 

When numerically solving the given axisymmetrical problem by the method of finite elements, 
we obtain that the maximum temperature that arises at the point of an instrument made of 
quartz glass is 450 deg C (the radius of the tip's base is equal to 2 mm, the ratio between 
the radius and length is 1/2, and the density of the heat flux on a glass--epidermis boundary 
2 man in length is equal to 2-10 ~ W/m~). 

Another simulation problem can be represented by the problem of heating the output face 
of the light conductor, which corresponds to the use of the laser scalpel without a focusing 
optical system. The given problem with account of (4)-(6) can be written as the system of 
equations 

~, OZT @ 2a ..T_+_(o+_2q.__..~=O, (r, z) EG; 
Oz ~ Ro Ro 

OT 
~ - + o~ (T - -  T~,,) = Q, (r, z) E ao.  

On 

(9) 

(lO) 
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For numerical solution of system (9) and (I0), we use the method of finite differences. We 
choose a uniform spatial grid {z~} ~=i with the step h = Zk+z-z k. Then, for the grid function 

of temperature, the difference system of equations equivalent to system (9) and (I0) assumes 
the form 

(uk+i-  2uh + uk-1) 2ah 2qh - -  - - - - u k - q - o ~ - ~ -  --0, k = 2 ,  K - - l ;  (Ii) 
h ~ Ro Ro 

h (  2q~ 2~z~ ) 
( ' U 2  - -  Ul) - -  O~ll~l -~- T (01 ~- R0 RO - h  - -  = o; ( 1 2 )  

h (UK-I~UK)+Q"[-"2 "- ~ 2qK u~: =0.  (13) 
Ro Ro 

The given system, obtained by the method of heat balance, is conservative and is of the second 
order of approximation over the spatial variable. We note that Eqs. (9) and (i0) are non- 
linear because the coefficients of convective and radiant heat exchange entering into these 
equations depend on temperature: 

a=~(T). (14) 

In order to solve difference equations (11)-(13), one can use an iterative algorithm, on 
each step of which the thermal field of the scalpel is calculated by the pivotal method, and 
the coefficient a changes according to new values of the temperature. The indicated algorithm 
converges, and in order to achieve the desired precision, a few tens of iterations are re- 
quired. In Fig. 4, the maximum temperature that arises in the light conductor is graphed as 
a function of the geometrical parameters for the linearized and nonlinearized problem (9) and 
(i0). The temperature of the instrument and the length of the contact zone are related by a 
practically linear dependence. The heating above the surrounding medium, when the contact 
zone is equal to 0-I0 mm, is 200 to 850 K. The relative error of the linearized problem as 
compared with the nonlinear one does not exceed 10%. 

The results of the numerical calculation of the fields of radiation intensity and temper- 
ature distribution can find application in the design and optimization of the tips of laser 
scalpels. The different types of instruments considered in the article can be used under dif- 
ferent conditions, depending on the medical requirements. 

NOTATION 
m 

I, radiation intensity; T, temperature; Tav, average (ambient) temperature; r = (r, z), 
moving coordinates; <, absorption coefficient; 6, reflection coefficient; Bz and 82, angles 
of incidence and refraction on the boundary of the media with refraction coefficients n I and 
n2; emax, maximum beam divergence angle; X, heat conduction; o, Stefan-Boltzmann constant; 
~, radiation frequency; Po = eL2/(XTav), Pomerantsev criterion; Ki = qL/(lTav), Kirpichev 
criterion; a, heat-transfer coefficient; ~, density of interior sources; q, flux density on 
the lateral surface; Q, flux density on the face plane; R0, radius of the tip's base; G, region 
of the tip; ~G, boundary of the region; ~, outward normal to G; u, grid temperature function. 
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